
Production studies of proton-rich T=2 nuclei

E. Bennett, R. Burch, B. Fenker, M. Mehlman, D. Melconian, and P.D. Shidling

We have continued our investigations of efficiently producing the nuclei of interest to the TAMUTRAP facility using the K150 Cyclotron with the heavy-ion guide. As part of this effort, we performed a ²⁴Si production experiment using the K500 Cyclotron in combination with the MARS spectrometer.

²⁴Si was produced in fusion-evaporation reaction in an inverse kinematic mode. A primary beam of ²⁴Mg at 23 MeV/u was bombarded on a 1 atm ³He gas target cooled to liquid nitrogen temperature. The reaction products were analyzed using the MARS spectrometer, which was operated with a total momentum acceptance of $\Delta p/p = 1.92\%$. Identification of the reaction products was made in the usual way: via a position-sensitive Si-strip detector in the focal plane of MARS. Fig. 1shows the energy deposited in this detector versus the vertical position in the strip detector, with the isotope of interest, ²⁴Si, clearly separated from the other reaction products.

FIG. 1. Results of ²⁴Si production run, The 2D plot of the energy loss versus Y position in the strip detector separates the different reaction products.

The yield of different reaction products and isobars (A=24) produced in this reaction were determined by optimizing the rigidity settings of MARS. The production rate for ²⁴Si observed at the focal plane was twice the production rate of ³²Ar [1] which was also produced in fusion-evaporation reaction. Theoretical cross-section calculations for nuclei of interest were

carried out using PACE4 code [2]. The calculations predict a factor of two between the production cross-sections ³²Ar and ²⁴Si, in agreement with the experiment.

The efficiency of MARS spectrometer needs to be known for determining the absolute cross section experimentally. In this connection, we performed an experiment for determining the transport efficiency of MARS by bombarding ³⁶Ar beam at 17 MeV/u on ²⁷Al target of thickness 75 μ m. The reason for using this target was to match the rigidity setting of ³⁶Ar primary beam with the ³²Ar secondary beam. This leads us to determine the transport efficiency of MARS for a particular rigidity setting. In this experiment, the current of ³⁶Ar after reacting with ²⁷Al target was measured at the target chamber Faraday cup and at the focal plane Faraday cup. We are currently analyzing the data and also trying to estimate the transport efficiency using LISE++ code [3].

In addition to this, we have looked into using a projectile fragmentation reaction for producing beta-delayed super allowed proton emitters. We performed an experiment for producing ³²Ar in this mode by bombarding a primary beam of ³⁶Ar at 17MeV/u on ⁹Be, ^{nat}Ni and ²⁷Al targets of thickness 150 μ m, 6 μ m, and 76 μ m respectively. In the coming year, we will be analyzing the data of projectile fragmentation reaction, estimate the transport efficiency of MARS spectrometer and compare it with the prediction made using LISE++ code [3].

- [1] O.B. Tarasov and D. Bazin, Nucl. Instrum. Methods Phys. Res. **B204**, 174 (2003), (Modified version of Julian code incorporated in LISE++ package).
- [2] R.S. Behling *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2013-2014), p. I-58.
- [3] O. Tarasov, D. Bazin, M. Lewitowicz, and O. Sorlin, Nucl. Phys. A701, 661 (2002).